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An Improved Multigrid Technique for Quasi-
TEM Analysis of a Microstrip Embedded in

an Inhomogeneous Anisotropic Medium
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Abstract—An improved multigrid technique for the quasi-TEM
analysis of a microstrip line embedded in an inhomogeneous
anisotropic dielectric medium is presented. A general finite-
difference form for the inhomogeneous anisotropic medium is
derived by the finite-volume discretization of Gauss’ theorem.
By the analogy between the quasi-TEM and the steady current
problems, this general form can be interpreted by Kirchhoff’s
current law. Then, the electric potential distribution in this
complicated dielectric structure can be regarded as that on
a resistive network, which makes the formulation easier. The
resulting matrix equation for the potential distribution on the
finest grid is solved by the improved multigrid iteration, where
the coarse-grid operator is derived directly from the finest grid
operator by the help of an equivalent resistive network. Three
numerical examples show that the convergence rate is hardly
dependent of the number of unknowns and the complexity of
the dielectric media. Moreover, the numerical results are in good
agreement with those by the other method when special cases are
considered.

Index Terms—Microstrip, multigrid, quasi-TEM.

I. INTRODUCTION

QUASI-TEM analysis, which includes the calculation of
capacitance and effective dielectric constant of a single
or multiple conductor microstrip transmission line, is of

great importance in the design of microwave integrated-circuit
components, and therefore, has received a lot of attention.
Recently, the quasi-TEM analysis is also essential in the
study of integrated electro-optic modulation. Once the electric
field distribution within the waveguiding region is obtained,
the drive voltage of the modulator can be easily estimated.
Hence, many computational methods have been proposed
for the quasi-TEM analysis. Among the methods that have
been used often are the conformal mapping method [1], [2],
the boundary-element method [3], [4], the mode-matching
method [5], the spectral-domain method [6], the moment
method [7], [8], etc. However, each standard method is suitable
only for a specific type of microstrip line structure. When a
planar structure made of inhomogeneous anisotropic dielec-
tric medium is to be analyzed, all the methods become too
complicated to be widely applicable. Hence, the conventional
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finite-difference method [9]–[13] is then a possible choice for
such a complicated problem.

A finite-difference solution basically involves the following
steps:

1) deciding the governing equation, which can be a differ-
ential equation or an integral equation;

2) using a vertex-centered grid or a cell-centered grid [14]
to discretize the computational domain into a finite set
of grid points;

3) transforming the governing equation and the boundary
conditions into finite-difference forms at each node,
which gives rise to a set of linear equations;

4) solving these linear equations to get the numerical
solutions on the nodes.

Many authors [9]–[13] use the vertex-centered grid to
discretize the computational domain and convert the differ-
ential equation into finite-difference form at each grid point
by replacing the derivatives by truncated Taylor’s series.
However, the normal derivative of the electric potential is
discontinuous at the interface between two different dielectric
media. Hence, this strategy is difficult to be implemented if
there are two different dielectric media between two adjacent
grid points.

In this paper, a finite-volume discretization of the inte-
gral equation on a cell-centered grid, which preserves the
conservation of the electric flux, is used in the analysis of
inhomogeneous anisotropic structure. The dielectric constant
between two adjacent grid points is allowed to be discontin-
uous, which makes this strategy more flexible in constructing
computational grid points. Owing to the close analogy between
quasi-static and steady current problems, the derived general
finite-difference form can be illustrated by a simple, but
meaningful, resistive network.

To solve the matrix equation derived by discretization, two
methods are commonly used. The first choice, is obviously the
Gauss elimination method, which is also known as a direct
method. However, this method is computationally intensive
and can be prone to accumulated truncation error when the
matrix size is large. Hence, several authors [9]–[13] adopt
alternative choices, namely, the iteration methods such as
the Gauss–Seidel (GS), red–black GS, and successive over-
relaxation techniques. However, these conventional iteration
methods all suffered from poor convergence because the oscil-
lating errors can be effectively eliminated while the smooth er-
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rors cannot [14]–[20]. Recently, the multigrid method has been
discussed in much of the mathematical literature [14]–[20],
which shows that it is a powerful technique for iteration. The
reported results show that different frequency components of
the error can be damped separately by iterating on grids of
various sizes, and, therefore, give rise to a much faster overall
rate of convergence than iterating on the conventional single
grid. To know more about the related work, several science
databases such as Science Citation Index and Compendex
have been searched. Unfortunately, no detailed application
of the multigrid method in the quasi-TEM analysis of an
inhomogeneous anisotropic medium has been reported so
far. It then becomes of great interest to investigate how the
multigrid method can be used or modified to overcome the
poor convergence drawbacks mentioned previously.

To demonstrate the merit of the multigrid method in the field
calculation, in this paper, the authors will directly cope with
the calculation of an inhomogeneous anisotropic medium and
leave the homogeneous isotropic calculation as a special case
for data verification. For the multigrid calculation, a coarse-
grid operator and a fine-grid operator for evaluating the data
points must be efficiently used. When the medium is homo-
geneous, these two operators are essentially the same. For an
inhomogeneous medium, the coarse-grid must be modified,
for example, by the variational approach [16]. However, the
calculation involved is too much to be time efficient [19]. In
this paper, the general finite-difference form derived by finite-
volume discretization is also applied in finding the coarse-grid
operator directly from the existing fine-grid operator by the
help of an equivalent resistive network, so a lot of coarse-
grid operator calculations can be eliminated. Thus, the overall
computation time is greatly reduced by the use of the multigrid
iteration scheme and the resistive network analogy in finding
the coarse-grid operator.

This paper is organized as follows. Section II describes
the governing equations of the quasi-TEM problem. Section
III describes the discretization of the computational domain.
Section IV shows the derivation of the general finite-difference
form by the finite-volume discretization method. Section V
gives the network analogy of the finite-volume discretization
and its application. The multigrid algorithm and the coarse-
grid operator are described in Section VI. In Section VII, three
examples are given for the demonstration of the capability of
the present method. Results are then summarized in a brief
conclusion.

II. GOVERNING EQUATIONS FORPOTENTIAL DISTRIBUTION

The problem to be considered is depicted as shown in
Fig. 1. A rectangular outer conductor encloses a structure
consisting of an infinitely thin inner conductor embedded
in an inhomogeneous anisotropic dielectric medium. This
structure is assumed to be uniform in the-direction. Under
the assumption that the mode of propagation is quasi-TEM, the
field distribution in this structure is a two-dimensional (2-D)
electrostatic problem in the– -plane. The inhomogeneous
anisotropic effect of the dielectric medium is described by the

Fig. 1. Microstrip line embedded in an inhomogeneous anisotropic dielectric
medium.

tensor

(1)

where and , dielectric constants, are assumed to be
blockwise smooth in the computational domain. The normal
vectors on the interfaces where the dielectric constants pose
discontinuities are all assumed to be parallel to the- or -axis.

The governing equation for the electric potential distribu-
tion in the 2-D inhomogeneous anisotropic dielectric
region can be written as the partial differential equation

(2)

where and are unit vectors in the and directions,
respectively, and is the charge density distribution. In (2),
although is equal to zero in the dielectric region, it is
reserved for the sake of generality. If the outer conductor
is grounded and the inner conductor is at potential, the
boundary conditions of (2) are

on the inner conductor
on the outer conductor.

(3)

When the dielectric medium is homogeneous, (2) can be
simplified to the well-known Poisson’s equation as given by

(4)

An alternative derivation of the governing equation for the
electric potential distribution is in the form of an integral
equation. Fig. 2(a) shows a typical dielectric region where
a control surface encloses a shaded control volume. This
control volume is the rectangle , .
Obviously, this control surface consists of the east, south,
west, and north faces, which are denoted as, , , and

, respectively. Integrating (2) over the control volume and
applying the divergence theorem gives the Gauss law

(5)

The first, second, third, and fourth surface integrals in the left-
hand side (LHS) of (5), referred to as the electric fluxes flowing
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(a)

(b)

Fig. 2. (a) Control volume used for finite-volume discretization method. (b)
Circuit analogy of the finite-difference form at pointP .

through the east, west, north, and south faces of the control
volume, are denoted as , , , and , respectively. The
right-hand side (RHS) of (5) is the total chargein the control
volume .

III. D ISCRETIZATION OF THE COMPUTATIONAL DOMAIN

Before constructing computational grid points, the computa-
tional domain is divided into a group of subcells. As depicted
in Fig. 1, the entire computational domain in this calculation
is initially divided into 3 2 cells, which is defined as the
coarsest level . This is the simplest dividing method
which can represent the conductor-to-dielectric interfaces.
Then, equally dividing each cell on level into four
finer subcells regardless of the dielectric boundaries gives 6

4 subcells on level as shown in Fig. 3. This fining
process is continued until the refinement is sufficient for the
required accuracy on the finest level . Hence, there are

subcells on level , where and
.

A vertex-centered grid or a cell-centered grid can be used
to discretize the computational domain. In the vertex-centered
case, the computational grid is composed of a finite set of grid
points which are located at the vertices of the cells. In this
paper, a cell-centered grid, which constructs the computational
grid points at the centers of the cells is used to discretize
the computational domain. The cell-centered grids, from the

Fig. 3. Cell-centered grids onG(1) andG(2). represents grid points on
G(1), and� represents grid points onG(2).

coarsest to the finest levels, are defined as , , ,
, , respectively. Hence, the grid is composed

of grid points. Fig. 3 shows the cell-centered
grids and . The coarsest grid includes 3 2
grid points and the finer grid includes 6 4 grid points.
It should be noted that each cell on the finest level may or
may not include different dielectrics while discretizing the
computational domain. Hence, this strategy is more flexible
than the conventionally used vertex-centered method [9]–[13],
which should locate the computational grid points at the
dielectric boundaries.

IV. DISCRETIZATION OF THE GOVERNING EQUATIONS

A typical computational grid point surrounded
by four adjacent grid points , , ,
and is shown in Fig. 2(a). Let , , , ,
and be the potentials at grid points, , , , and ,
respectively. The goal of this section is to derive the relation
between , , , , and . Many authors [9]–[13] use
a vertex-centered grid to discretize the computational domain
and transform the differential equations (2) or (4) into finite-
difference forms at each grid point by replacing the derivatives
in (2) or (4) by truncated Taylor’s series. However, the normal
derivative of the electric potential is discontinuous at the
interface between two different dielectric media. Hence, this
strategy from discretizing the differential equation is difficult
to be implemented, for example, if there are two different
dielectric media between points and . To overcome this
difficulty, the finite-volume discretization, which sets forth
from discretizing the integral (5), is used. Integrating the-
directed component electric field from point ( ) to point
( ) [cf. Fig. 2(a)] gives

(6)

where is the -directed electric induction. Although
may pose discontinuity at the interface between points ()
and ( ), is continuous at this interface whose normal
vector is assumed to be parallel to. Hence, it is reasonable to
approximate in (6) by its value at point ( ) if the
distance between points and is small enough. Substituting
the approximate in (6) into the first surface integral
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in (5) gives

(7)

Approximating by and by (assume
the control volume is small enough), can be expressed as
a function of and . Similarly, can be expressed as
a function of and , as a function of and ,
and as a function of and . Then, substituting ,

, , and into (5) gives the discretization form of the
integral (5) at point

(8)

where the functions and are defined as the functions

(9)

and

(10)

respectively. Note that, [or ],
referred to as the equivalent dielectric constant for the flux
flowing in the horizontal (or vertical) direction of the rectangle

, , is obtained by taking the
harmonic average of (or ) in the interval
(or ), then taking the arithmetic average of the
previous result in the interval (or ).

V. CIRCUIT ANALOGY OF THE

FINITE-VOLUME DISCRETIZATION

As the governing equations of quasi-static and steady cur-
rent problems are essentially the same in mathematics, the
analyses of them are in close analogy to each other with the
dual quantities defined in Table I. Hence, it is possible to il-
lustrate the mathematical derivation of the difference equation
in Section IV by a simple but meaningful resistive network
model. To obtain this goal, the general finite-difference form
(8) at point can be rewritten as Kirchhoff’s current law at
point [see Fig. 2(b)]

(11)

TABLE I
ANALOGY BETWEEN QUASI-STATIC AND STEADY CURRENT PROBLEMS

where and are defined as the functions

(12)

and

(13)

respectively. In (11), , which is actually the in (8), is
referred to as the current source at point. In (12) [or
(13)], [or ] is referred to
as the equivalent resistance for the current flowing in the
horizontal (or vertical) direction of the rectangle

, . In general, the analytical solutions of
the integrations in and
are not available and numerical calculations are needed. To
speed up the calculation, the simple midpoint integration
formula is adopted. For example, if is smooth in the
rectangle , ,
in (12) is approximated by at point [

]. On the other hand, if poses discontinuities in this
rectangle, the midpoint integration formula is applied on each
smooth subregions. Moreover, if and are constant, the
general finite-difference form at point, as derived in (11), is
simplified to the standard five-point difference approximation
of Poisson’s equation [9]–[13].

Now, consider the cells on the finest level.
A typical cell (shaded region) is enlarged as shown in Fig. 4.
When this cell doesn’t border any conductor, applying the
general finite-difference form (11) at point and choos-
ing the control volume just as this shaded cell gives the
discretization form of the integral equation (5) at point.
When the boundary of the shaded cell borders the conductor,
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Fig. 4. A local enlargement of the cell-centered gridG(M) and its circuit
analogy.

the Dirichlet boundary condition should be applied, so (11)
should be slightly modified. For example, when the north
side of the shaded cell borders the inner conductor,
and in (11) should be replaced by and

, respectively. If the integration in the inter-
val is approximated by the midpoint integration
formula, can be regarded as the series of
two lump resistors and

(14)

Hence, in the numerical calculation, as depicted in Fig. 4,
one should prepare fourresistances ,

, , and
for each cell on the finest level. Finally, applying Kirchhoff’s
current law at each grid point of the finest grid ,

linear algebraic equations can be obtained
and are written as the following matrix equation:

(15)

where is a matrix, is the unknown vector on ,
and is the known vector of the matrix equation. The
solution of (15) will be described in the following section.

When the final potential distribution is obtained,
the total charge on the inner conductor can be calculated
by applying Gauss’ law to a control surface enclosing the
inner conductor. The control volume is a rectangle with the
control surfaces coincident with the boundaries or the cells
on the finest level. The total charge on the inner conductor

is equal to thetotal current flowing out of the control
surface. Since the finite-volume discretization preserves the
conservation of the electric flux, the calculated total charge
on the inner conductor is independent of the position of the
control volume. Then, the capacitance can be obtained by
calculating .

VI. THE MULTIGRID METHOD

A. Multigrid Algorithm

The matrix (15) is banded and sparse, and can be solved
by the conventional iteration methods such as GS, red–black

Fig. 5. A local enlargement of the cell-centered gridsG(M) andG(M�1)

and its circuit analogy.� represents grid points onG(M) and represents
grid points onG(M�1).

GS, and successive over-relaxation method, etc. However,
the conventional iteration methods, which do iteration on the
single grid (i.e., the finest grid) all suffer from the prob-
lem of poor convergence. Owing to these iteration methods
are to correct the potential distribution point by point, the
high-frequency (HF) components of error are then rapidly
reduced (smoothed) and the low-frequency components are
difficult to be removed. Hence, in the real calculation, the
convergence is fast for the first two or three iterations; then
the convergence becomes very slow for the remaining itera-
tions.

The slow convergence of iteration on a single grid can be
improved by introducing the multigrid method. The basic idea
of the multigrid method is to iterate not on a single grid, but
on a sequence of fining grids. Hence, the higher frequency-
error components can be reduced by iteration on finer grids
and the lower frequency-error components can be reduced by
iteration on coarser grids. For simplicity, the two-grid method,
a special case of the multigrid method, is considered, first. One
iteration cycle for the two-grid method, which does iteration
on and (cf. Fig. 5), is loosely described as the
following steps [20].

1) Applying a few, e.g., two or three, GS iterations on (15)
with a suitable initial guess gives the approximate solu-
tion . Then, the error , which is
mainly composed of low-frequency components, should
satisfy the following defect equation:

(16)

with residual

(17)

It should be noted that (16) is of the same form as (15).
2) Projecting the defect equation from to

gives

(18)

where is the coarse-grid operator on
and the details will be described in the next subsection,

is the unknown error on , is
obtained by using the bilinear restriction [14] of
from to . Then, applying two or three GS
iterations on (18) with a zero initial guess gives the ap-
proximate solution . Now, the HF components of
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error on , which are low-frequency components
relative to , can be reduced. Using an effective area
interpolation [19] for from to
gives Thus, the new approximate solution is
replaced by .

3) Applying two or three GS iterations on (15) with the ini-
tial guess gives the updated approximate solution

.

As more frequency components of error can be reduced by
iterating on both and than on only , it
is expected that the convergence rate can be increased if the
iterations are applied on all the grids from the finest to
the coarsest . In this work, the multigrid V-cycling (MV)
and full multigrid V-cycling (FMV) [20] are both used in the
authors’ calculation.

B. Coarse-Grid Operator of Cell-Centered Discretization

In this subsection, one wants to derive the coarse-grid
operator directly from the finest grid operator .
Then , where is decreasing from to , can
be derived from . When the dielectric medium is
homogeneous, the finite-difference forms at a fine-grid point
and that at a coarse-grid point are the same. However, if the
medium in the fine cells are inhomogeneous, the coarse-grid
operator and the fine-grid operator are different. Hence, the
derivation of the difference formula on coarse grids should be
carefully treated. McCormick defines the coarse-grid operator
by a variational approach [16]. However, the operator count
is time consuming as referred in [19]. In this work, the finite-
volume discretization derived in Section IV and its circuit
analogy described in Section V can also be applied in this
case. The shaded region, which includes four equal fine cells
as shown in Fig. 5, is chosen as the control volume. Although
the discretization error is larger on the coarser grid than
on the finer one, the general finite-difference form (11) is
also applied at the coarse-grid point. That is because the
function of the iteration on the coarser grid is simply to reduce
the lower frequency components of errors. This mathematical
derivation can also be replaced by a resistive network. From
(12), can be rewritten as

(19)

By the help of (14), and
in (19) can be rewritten as

(20)

Fig. 6. Microstrip line embedded in an inhomogeneous anisotropic dielec-
tric.

and

(21)

respectively. From (19)–(21), the resistance on can be
obtained by the combination of the series and the parallel of
the resistance on . Similarly, the resistance on the coarser
grid , where is decreasing from to , can also
be derived by the help of the resistive network on .
The same process can also be applied in the calculation of
the resistance in the other three directions. Thus, the operation
count [19] by using (20) and (21) is much less than that using
the variational approach.

VII. N UMERICAL EXAMPLES

To demonstrate the rapid convergence of the improved
multigrid method proposed in this paper, three examples with
the same electrode structures (see Fig. 1) but filled with
different dielectric media are tested. The electrode parameters
as indicated in Fig. 1 are: ; ; ; ;
and . The parameters to be calculated is the capacitance

and the effective dielectric constant , defined as ,
where is obtained by calculating with all the dielectric
media replaced by air.

The first example is a microstrip line embedded in an
inhomogeneous anisotropic dielectric as shown in Fig. 6 [21],
[22]. There are four kinds of anisotropic dielectric medium
enclosed by the conducting boundary. Each dielectric has a
dielectric constant, and therefore, the dielectric medium is
globally inhomogeneous. First, the isotropic case is considered.
The parameters as indicated in the figure for the numerical test
are , , , , ,

, , ,
where is the dielectric constant of air. Fig. 7(a) shows the
normalized norm of residual on for three iteration
methods: FMV, MV [20], and GS on the finest grid .
Solid and dashed lines denote the cases with and without
dielectrics, respectively. The costs of the above three iterations
are measured in terms of work units. One work unit
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(a)

(b)

Fig. 7. Convergence history of the normalizedL2 norm of the residual for
microstrip line shown in Fig. 6. (a) Isotropic and (b) anisotropic dielectric
medium.

denotes the cost of performing one GS iteration on the finest
grid [19]. Table II shows the number of work units
required for a normalized norm of less than or equal to
10 . Obviously, the convergence rate of the GS scheme is
extremely poor as compared to those of the FMV and MV.
This is because the low-frequency components of error are
difficult to be removed by the conventional GS method, which
iterates only on a single grid (finest grid). The convergence rate
of the FMV is slightly faster than that of the MV because a
better initial guess on is adopted by the FMV [20]. As
can also be seen from Fig. 7(a) and Table II, the convergence
rate in the calculation of the field distribution with and without
dielectrics are quite similar, which indicates the complexity
of dielectric structure only slightly affects the convergence
rate during iteration. To test the convergence rate for the
anisotropic case, the previous dielectric constants are replaced
by , , , , ,

, and . The same calculation is also
carried out once again. The results are shown in Fig. 7(b) and
Table II. Similar fast convergence is also obtained. And the
anisotropy of the dielectric does not significantly affect the
convergence rate, too.

The second example is to analyze the microstrip line as
shown in Fig. 8. In this example, the sidewall of the dielectric
medium has a slope, which can be found in the fabrication
of the integrated optical waveguide [23], [24]. The slope
makes the problem much more difficult to be solved by
the conventional vertex-centered finite-difference method. The
parameters used for the isotropic case are
and , . For the anisotropic case, the
parameters are , , and .
The dielectric constants are assumed to be staircase near the

TABLE II
NUMBER OF WORK UNITS REQUIRED FOR THEFIRST EXAMPLE

Fig. 8. Microstrip line with slope sidewall embedded in an anisotropic
dielectric.

Fig. 9. Convergence history of the normalizedL2 norm of the residual for
the microstrip line shown in Fig. 8.

slope. Hence, the normal vectors of the interfaces where the
dielectric constants pose discontinuity are still parallel to the

- or -axis. Fig. 9 shows the normalized norm of residual
calculated by FMV, MV, and GS methods of iterations used
previously. Table III also shows the number of work units
required for a normalized norm of less than or equal to
10 . As can be seen from Fig. 9 and Table III, the improved
multigrid method also works as well for this case. Again,
no significant difference in rates of convergence due to the
anisotropy of the structure is observed.

To demonstrate the convergence rate for a more complicated
dielectric structure, the third example is depicted as shown in
Fig. 10. The dielectric constant is graded in the substrate as
given by

(22.1)

(22.2)
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TABLE III
NUMBER OF WORK UNITS REQUIRED FOR THESECOND EXAMPLE

Fig. 10. Microstrip line embedded in an inhomogeneous anisotropic dielec-
tric.

Fig. 11. Convergence history of the normalizedL2 norm of the residual for
microstrip line shown in Fig. 10.

where . The parameters for the isotropic case
as indicated in Fig. 10 for the numerical test are

and . For the anisotropic case, the
parameters are and , while and
are unchanged. Similar fast convergence rate in terms of work
units is observed as shown in Fig. 11 and Table IV. Hence,
the complexity and the anisotropy of dielectric structure can
only have a negligible effect on the convergence rate of the
improved multigrid method.

As can also been seen from Tables II–IV, to obtain certain
required accuracy, the work units [in terms of ]
required for FMV or MV iterations on are almost the
same for all , while that for GS iterations is increasing
rapidly with . Note that the cost of one work unit
is four times as large as one work unit since the
number of grid points on is four times as those on

. Thus, the computing time for the FMV and MV are
approximately on the order of , where is the number
of grid points, but roughly on the order of for GS
iterations. So, the FMV and MV are most suitable for the

TABLE IV
NUMBER OF WORK UNITS REQUIRED FOR THETHIRD EXAMPLE

TABLE V
EFFECTIVE DIELECTRIC CONSTANTS

problem with a large amount grid points, where the iterations
required for the GS is extremely large.

The effective dielectric constants calculated by the FMV in
the above three examples are shown in Table V. The difference
between the results calculated by this method and that obtained
by the moment method [7], [8] is less than 2%.

VIII. C ONCLUSION

An improved multigrid technique has been successfully
applied in the quasi-TEM analysis of a microstrip embedded
in an inhomogeneous anisotropic medium. The general finite-
difference form on inhomogeneous anisotropic medium is
derived by the finite-volume discretization of an integral
equation, which preserves the conservation of the electric flux.
Owing to the close analogy between the quasi-TEM and steady
current problems, the solution of the microstrip line embedded
in an inhomogeneous anisotropic medium is equivalent to that
of a resistive network. The finite-difference forms, from the
finest to the coarsest, can all be obtained by applying the
Kirchhoff law on the resistive network. The resulting matrix
equation for the potential distribution on the finest grid is
solved by the improved multigrid iteration, where the coarse-
grid operator is derived directly from that on the finest grid
by the help of an equivalent resistive network.

Three numerical examples are given and the results are
in good agreement with those by the other method when
special cases are considered. The convergence rate is hardly
dependent of the number of unknowns and the complexity of
the dielectric media.
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In this paper, only one microstrip line embedded in an
inhomogeneous anisotropic medium is considered. However,
in many practical applications, two or more microstrip lines
are usually involved. The application of the present method
on the field calculation of these microstrip structures will be
of great interest in the future.
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