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An Improved Multigrid Technique for Quasi-
TEM Analysis of a Microstrip Embedded in
an Inhomogeneous Anisotropic Medium

Ching-Long Tsai and Way-Seen Wangember, IEEE

Abstract—An improved multigrid technique for the quasi-TEM finite-difference method [9]-[13] is then a possible choice for
analysis of a microstrip line embedded in an inhomogeneous sych a complicated problem.
anisotropic dielectric medium is presented. A general finite- A finite difference solution basically involves the following
difference form for the inhomogeneous anisotropic medium is .
derived by the finite-volume discretization of Gauss’ theorem. steps:
By the analogy between the quasi-TEM and the steady current 1) deciding the governing equation, which can be a differ-
problemf, this rg];enerarl]l forlm can be interlprgtedbby Kirchhohff’s ential equation or an integral equation;
current law. Then, the electric potential distribution in this . . .
complicated dielectric structure can be regarded as that on 2) usm_g avgrtex-centered gr_ld ora Cellice_ntered _gr.ld [14]
a resistive network, which makes the formulation easier. The to discretize the computational domain into a finite set
resulting matrix equation for the potential distribution on the of grid points;

finest grid is solved by the improved multigrid iteration, where 3) transforming the governing equation and the boundary

the coarse-grid operator is derived directly from the finest grid conditions into finite-difference forms at each node
operator by the help of an equivalent resistive network. Three '

numerical examples show that the convergence rate is hardly Wh'c_h gives rlse_ to a set of _Ilnear equations; .
dependent of the number of unknowns and the complexity of ~ 4) solving these linear equations to get the numerical
the dielectric media. Moreover, the numerical results are in good solutions on the nodes.

agreement with those by the other method when special cases are Many authors [9]-[13] use the vertex-centered grid to
considered.

discretize the computational domain and convert the differ-
ential equation into finite-difference form at each grid point
by replacing the derivatives by truncated Taylor's series.
|. INTRODUCTION However, the normal derivative of the electric potential is

QUASI—TEM analysis, which includes the calculation Ofjlscontmuous at the interface between two different dielectric

Index Terms—Microstrip, multigrid, quasi-TEM.

. . : . . “media. Hence, this strategy is difficult to be implemented if
capacitance and effective dielectric constant of a single : . . . .

X X : ... . “here are two different dielectric media between two adjacent
or multiple conductor microstrip transmission line, is 0 id paints

great importance in the design of microwave integrated-circ&fm thi ; finite-volume discretization of the int
components, and therefore, has received a lot of attention. S baper, a e-volume discretization of the inte-
Recently, the quasi-TEM analysis is also essential in tl%al equa_tlon on a cell-c_entered_gnd, Wh.'Ch preserves the
study of integrated electro-optic modulation. Once the elect&gnservatlon of thg electr.|c flux, iis used |n.the apaly5|s of
field distribution within the waveguiding region is Obtainedlnhomogeneous_anlsotroplc st_ructL_Jre. The dlelectrlc_const_ant
the drive voltage of the modulator can be easily estimate{&'?tween ,tWO adjacent. grid points is aIIowgd t(? be dlscont.m-
Hence, many computational methods have been propoSt¥'S: which makes this strategy more flexible in constructing
for the quasi-TEM analysis. Among the methods that ha\gzgmputatpnal grid points. Owing to the close analogy between
been used often are the conformal mapping method [1], [ﬂgg5|-§tatlc and steady current-problems, the der.lved general
the boundary-element method [3], [4], the mode-matchirfﬁ"te"_j'ﬁerence.fo_rm can be illustrated by a simple, but
method [5], the spectral-domain method [6], the momeft€aningful, resistive network. _ o
method [7], [8], etc. However, each standard method is suitableT® SOIve the matrix equation derived by discretization, two
only for a specific type of microstrip line structure. When &éthods are commonly used. The first choice, is obviously the
planar structure made of inhomogeneous anisotropic diel&auss elimination method, which is also known as a direct
complicated to be widely applicable. Hence, the conventior@ild can be prone to accumulated truncation error when the
matrix size is large. Hence, several authors [9]-[13] adopt
Manuscript received July 15, 1996; revised November 21, 1996. This woﬂ!tematlve chqces, namely, the iteration methods _SUCh s
was support by the National Science Council, Taipei, Taiwan, R.0.C. undfie Gauss—Seidel (GS), red—black GS, and successive over-
Contract NCS85-2215-E-002-009. relaxation techniques. However, these conventional iteration
The authors are with the Department of Electrical Engineering, National ! .
Taiwan University, Taipei 10617, Taiwan, R.O.C. methods all suffered from poor convergence because the oscil-
Publisher Item Identifier S 0018-9480(97)02907-4. lating errors can be effectively eliminated while the smooth er-
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rors cannot [14]-[20]. Recently, the multigrid method has been Y Ground Plane
discussed in much of the mathematical literature [14]-[20], W,
which shows that it is a powerful technique for iteration. The

reported results show that different frequency components of

the error can be damped separately by iterating on grids of h 4 _
various sizes, and, therefore, give rise to a much faster overall

rate of convergence than iterating on the conventional single / ¥
grid. To know more about the related work, several science 0 0 a2 b "

x

databases such as Science Citation Index and Compendex

have been searched. Unfortunately, no detailed application

of the multigrid method in the quasi-TEM analysis of amFig. 1. Microstrip line embedded in an inhomogeneous anisotropic dielectric

inhomogeneous anisotropic medium has been reported mgsium.

far. It then becomes of great interest to investigate how the

multigrid method can be used or modified to overcome thensor

poor convergence drawbacks mentioned previously. 0
To demonstrate the merit of the multigrid method in the field [e] = {E“” (a(j)’ v) } (1)

calculation, in this paper, the authors will directly cope with c( 9)

the calculation of an inhomogeneous anisotropic medium awtere ¢, and ¢,, dielectric constants, are assumed to be

leave the homogeneous isotropic calculation as a special chkgkwise smooth in the computational domain. The normal

for data verification. For the multigrid calculation, a coarsesectors on the interfaces where the dielectric constants pose

grid operator and a fine-grid operator for evaluating the dagéscontinuities are all assumed to be parallel toither y-axis.

points must be efficiently used. When the medium is homo- The governing equation for the electric potential distribu-

geneous, these two operators are essentially the same. Foligin¢(z, y) in the 2-D inhomogeneous anisotropic dielectric

inhomogeneous medium, the coarse-grid must be modifigelgion can be written as the partial differential equation

for example, by the variational approach [16]. However, the ap(x, y) bz, )

calculation involved is too much to be time efficient [19]. In V - | —Gz2(2; ) 5 = — Gyey (T, y) T’ = pu

this paper, the general finite-difference form derived by finite- v 4 5

volume discretization is also applied in finding the coarse-grid (2)

operator directly from the existing fine-grid operator by th@herea, anda, are unit vectors in the: and y directions,

help of an equivalent resistive network, so a lot of coarsgespectively, ang, is the charge density distribution. In (2),

grid operator calculations can be eliminated. Thus, the overalthough p, is equal to zero in the dielectric region, it is

computation time is greatly reduced by the use of the multigridserved for the sake of generality. If the outer conductor

iteration scheme and the resistive network analogy in finding grounded and the inner conductor is at potertigl the

the coarse-grid operator. boundary conditions of (2) are
This paper is organized as follows. Section Il describes

the governing equations of the quasi-TEM problem. Section dx, y) = { (3)

Il describes the discretization of the computational domain.

Section IV shows the derivation of the general finite-differeno#/hen the dielectric medium is homogeneous, (2) can be

form by the finite-volume discretization method. Section gimplified to the well-known Poisson’s equation as given by

gives the network analogy of the finite-volume discretization 8¢ 826

and its application. The multigrid algorithm and the coarse- €x 7y TEy 75 = —PV- 4)

grid operator are described in Section VI. In Section VII, three Oz %y

examples are given for the demonstration of the capability of An alternative derivation of the governing equation for the

the present method. Results are then summarized in a beddctric potential distribution is in the form of an integral

conclusion. equation. Fig. 2(a) shows a typical dielectric region where
a control surface encloses a shaded control voldme his
control volume is the rectangle; < z < x4, 10 < ¥ < 4.
Obviously, this control surface consists of the east, south,

Il. GOVERNING EQUATIONS FOR POTENTIAL DISTRIBUTION west, and north faces, which are denotedsass;, S, and

The problem to be considered is depicted as shown . respectively. Integrating (2) over the control volume and
Fig. 1. A rectangular outer conductor encloses a structi®gplying the divergence theorem gives the Gauss law
consisting of an infinitely thin inner conductor embedded —d¢ ¢ —d¢
in an inhomogeneous anisotropic dielectric medium. This / e "5, d?JJF/S Cx dy"‘/s Eya—ydx
structure is assumed to be uniform in thalirection. Under ‘ &
the assumption that the mode of propagation is quasi-TEM, the + / €y u
field distribution in this structure is a two-dimensional (2-D) s Y
electrostatic problem in the—y-plane. The inhomogeneousThe first, second, third, and fourth surface integrals in the left-
anisotropic effect of the dielectric medium is described by theand side (LHS) of (5), referred to as the electric fluxes flowing

Microstrip Line

Vo, on the inner conductor
0, on the outer conductor.

ox

n

de = / P dV. (5)
v
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[ ]
{" X Fig. 3. Cell-centered grids o&(') and G(2). m represents grid points on
x J':J — G ande represents grid points o&(2).

coarsest to the finest levels, are defined@®¥, ..., G*),
N -, GM) | respectively. Hence, the grid® is composed
of Né“ X NZS’“) grid points. Fig. 3 shows the cell-centered
grids G and G@). The coarsest grid¥") includes 3x 2
grid points and the finer grid?? includes 6x 4 grid points.
It should be noted that each cell on the finest level may or
may not include different dielectrics while discretizing the
E computational domain. Hence, this strategy is more flexible
than the conventionally used vertex-centered method [9]-[13],
which should locate the computational grid points at the
dielectric boundaries.

Ry(x27x4 ;s

R(xxlyny) P R (X, x|y

Ry(x27x4 ys)

IV. DISCRETIZATION OF THE GOVERNING EQUATIONS

hY

(b)

Fig. 2. (a) Control volume used for finite-volume discretization method. (land N(.’L’g ys) is shown in Fig 2(a) Letp, dr, bs, dw
9 e . . 3 H t )

A typical computational grid point’(zs, y3) surrounded
by four adjacent grid point&(zs, ), S(zs3, v1), W(z1, y3),
Circuit anal f the finite-diff fi it : , 4
roult analogy of the finite-difierence form at pol and ¢ be the potentials at grid point8, E, S, W, and N,
respectively. The goal of this section is to derive the relation
through the east, west, north, and south faces of the conti@hweeny, ¢, ¢, p1, ande. Many authors [9]-[13] use
volume, are denoted &, 1, 1, andi,, respectively. The 3 vertex-centered grid to discretize the computational domain
right-hand side (RHS) of (5) is the total char@en the control  gng transform the differential equations (2) or (4) into finite-

volume V. difference forms at each grid point by replacing the derivatives
in (2) or (4) by truncated Taylor’s series. However, the normal
ll. DISCRETIZATION OF THE COMPUTATIONAL DOMAIN derivative of the electric potential is discontinuous at the

Before constructing computational grid points, the comput#lterface between two different dielectric media. Hence, this
tional domain is divided into a group of subcells. As depictedfrategy from discretizing the differential equation is difficult

in Fig. 1, the entire computational domain in this calculatio® be implemented, for example, if there are two different
is initially divided into 3 x 2 cells, which is defined as thedielectric media between pointS and £. To overcome this

coarsest levek = 1. This is the simplest dividing methoddifficulty, the finite-volume discretization, which sets forth
which can represent the conductor-to-dielectric interfacgom discretizing the integral (5), is used. Integrating the
Then, equally dividing each cell on levél = 1 into four directed component electric field from points( ) to point
finer subcells regardless of the dielectric boundaries gived®, ¥) [cf. Fig. 2(a)] gives

x 4 subcells on levek = 2 as shown in Fig. 3. This fining

process is continued until the refinement is sufficient for th$(x3 y) — d(zs, y) = * Dy(z, y) da vo <y < ys
required accuracy on the finest level= M. Hence, there are ’ ’ v Exlzy) -7
NP x N subcells on levek, where N = 3. 2¢=1 and (6)

NP = 2. 9k-1,

A vertex-centered grid or a cell-centered grid can be usedere D, is the z-directed electric induction. Although,
to discretize the computational domain. In the vertex-centergthy pose discontinuity at the interface between points )
case, the computational grid is composed of a finite set of gaadd @5, v), D, is continuous at this interface whose normal
points which are located at the vertices of the cells. In thigector is assumed to be paralleldg. Hence, it is reasonable to
paper, a cell-centered grid, which constructs the computatioaglproximateD, (z, ) in (6) by its value at point#,, y) if the
grid points at the centers of the cells is used to discretigéstance between poinfd and £ is small enough. Substituting
the computational domain. The cell-centered grids, from tlilee approximateD,.(z4, ¥) in (6) into the first surface integral
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in (5) gives TABLE |
Ya ” </)( ) ¢( ) ANALOGY BETWEEN QUASI-STATIC AND STEADY CURRENT PROBLEMS
_ _ L3, Y)—P\Ts5, Y
e= Dy (4, y) dy= / /’C 5 1 dy. (7) Quasi-Static Problem Steady Current Problem
Y2 Y2 — dx
x3 Ew (37 ) y) electric potential distribution ¢(x,y) electric potential distribution ¢(x,y)

Approximating¢(zs, ¥) by ¢p andp(xs, y) by ¢g (assume  electric field distribution E(x,y) electric field distribution E(x, y)
the control volume is small enoughy}. can be expressed as
a function of¢p and ¢ . Similarly, ¢,, can be expressed as
a function of¢p and ¢w, 9, as a function ofpp and ¢y, o
and+, as a function of¢p and ¢s. Then, substitutings.,  constitutive relation D =[c]& Ohm's law J = o &
1w, s, andp, into (5) gives the discretization form of the

- -
electric flux density D current density J

differential equation V-D = p, differential equation V-J =0

. . dielectric constant ¢ conductivity o
integral (5) at pointP
electric flux y or charge Q current /
eq d)P - d)E .
€, (.773, a:5|y2, y4) ﬁ (y4 - yg) capacitance C conductance I/R
5— T3
Gauss' law Kirchhoff's current law
P — QW
+e.1(z1, z3|y2, Ys) ididd (Ya — y2)
r3 — IT1
P — ¢N . )
+e51(22, Talys, vs) % (24 — x2) where R, and R, are defined as the functions
(o)
., d)P ) R = Ly ~ Xa
+eyl(w2, waly1, y3) —u (ra—m2)=Q (8) #(Za, Tolye, Ya) e (o, To|Ye, Ya)(Wa — Ye)
1
where the functions$? andsgq are defined as the functions = 4 1 (12)
S —
e (a, Tv|Ye, Ya) / /’”" 1
— 1 Yd 1 d (9) Tg € (‘/L’ y)
Yd — Ye Sy 1 / o] J 4 and
fad ./1;' f—
Ty — La Jg, Eac(xv y) Ry(.’IZ'a, .’L’b|yc7 yd) =3 Yd Ye
and e (Ta; Tolye, ya)(wy — Tq)
1
53(1(37117 $b|yc7 yd) = ~mp 1 (13)
T -
S b 1 dz (10) /x w1 W
Ty — Ty Jy 1 Ya 1 @ —dy
< dy Ye Ey (.’IZ’, y)
Yd — Ye Ye Ey(xv y)

. . . respectively. In (11),/, which is actually the@ in (8), is
respectively. Note that; (zq.zs|ye,ya) [OF €5 (@as, 25|y ¥d)],  yeferred to as the current source at poit In (12) [or
referred to as the equivalent dielectric constant for the fIl&3)], Ro(a, To|ye; ya) [OF Ry(za; 2|y, ya)] is referred to
flowing in the horizontal (orvertigal) dire_ction of the r.ectangl%s the equivalent resistance for the current flowing in the
To £ & < @y, Yo <y < yg, IS Obtained by taking the norizontal (or vertical) direction of the rectangle < z <
harmonic average of, (or ¢,) in the intervalz, <@ <y 4.\ < 4 < 4, In general, the analytical solutions of
(or Ye <y < yd_), ther_1 taking the arithmetic average of thegy,o integrations IR (a, zo|ye, va) and Ry(za, 3|ye, va)
previous result in the interva). <y < yq (Or 7, <= < 1) gre not available and numerical calculations are needed. To

speed up the calculation, the simple midpoint integration
V. CIRCUIT ANALOGY OF THE formula is adopted. For example, #, is smooth in the
FINITE-VOLUME DISCRETIZATION rectanglez, < =z < zy, ¥ < ¥y < w4, €4 xq, 1 |Ye, Ya)

As the governing equations of quasi-static and steady ciit-(12) is approximated by, at point [z, + z4)/2, (y. +
rent problems are essentially the same in mathematics, the/2]. On the other hand, it, poses discontinuities in this
analyses of them are in close analogy to each other with #@gtangle, the midpoint integration formula is applied on each
dual quantities defined in Table I. Hence, it is possible to ifmooth subregions. Moreover, df, ande, are constant, the
lustrate the mathematical derivation of the difference equatiganeral finite-difference form at poidt, as derived in (11), is
in Section IV by a simple but meaningful resistive networRimplified to the standard five-point difference approximation
model. To obtain this goal, the general finite-difference for®f Poisson’s equation [9]-{13].

(8) at point P can be rewritten as Kirchhoff's current law at Now, consider thevi™ x N cells on the finest level.
point P [see Fig. 2(b)] A typical cell (shaded region) is enlarged as shown in Fig. 4.
When this cell doesn’t border any conductor, applying the
or = n or = dw general finite-difference form (11) at poin® and choos-
Ro(zs, wslyz, ys)  Ra(w, w3lyz, va) ing the control volume just as this shaded cell gives the
¢r — PN + ¢r — s = (11) discretization form of the integral equation (5) at poifit
Ry(@2, zalys, ys)  Ry(z2, z4ly1, ys) When the boundary of the shaded cell borders the conductor,
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5 X Fig. 5. A local enlargement of the cell-centered gr@s*?) and G —1)
: and its circuit analogys represents grid points o&*) andm represents
I X 5 X I

grid points onG—1),

Fig. 4. A local enlargement of the cell-centered gfid") and its circuit
analogy. GS, and successive over-relaxation method, etc. However,
the conventional iteration methods, which do iteration on the
the Dirichlet boundary condition should be applied, so (1®ngle grid (i.e., the finest grid) all suffer from the prob-
should be slightly modified. For example, when the nortlem of poor convergence. Owing to these iteration methods
side of the shaded cell borders the inner conducify, are to correct the potential distribution point by point, the
and Ry(z2, z4lys, y5) in (11) should be replaced by, and high-frequency (HF) components of error are then rapidly
Ry(x2, z4|ys, ya), respectively. If the integration in the inter-reduced (smoothed) and the low-frequency components are
val y» < y < 34 is approximated by the midpoint integrationdifficult to be removed. Hence, in the real calculation, the
formula, R, (z3, z5|y2, y1) can be regarded as the series afonvergence is fast for the first two or three iterations; then
two lump resistors,.(z3, x4 |y2, y1) and R, (x4, x5|y2, y4)  the convergence becomes very slow for the remaining itera-
tions.

The slow convergence of iteration on a single grid can be
improved by introducing the multigrid method. The basic idea
of the multigrid method is to iterate not on a single grid, but
é4n a sequence of fining grids. Hence, the higher frequency-

Ro(x3, w5|y2, ya) = Ra(x3, Taly2, ya)+Re(wa, T5|Y2, ya)-
(14)

Hence, in the numerical calculation, as depicted in Fig.

one should prepare foumesistances R.(xs, x4|y2, ya),
Ro(w2, 23ly2, ya), Ry(x2, 24lys, ya), and Ry (22, z4ly2, y3)

error components can be reduced by iteration on finer grids
and the lower frequency-error components can be reduced by

for each cell on the finest level. Finally, applying Kirchhoff'steration on coarser grids. For simplicity, the two-grid method,

current law at each grid point of the finest grid(®),

a special case of the multigrid method, is considered, first. One

N N linear algebraic equations can be obtaineiteration cycle for the two-grid method, which does iteration

and are written as the following matrix equation:

on GM) and G -1 (cf. Fig. 5), is loosely described as the

following steps [20].

ABD M) — (M) (15) 1)
whereA™) is a matrix,¢™) is the unknown vector oG/*),
and f) is the known vector of the matrix equation. The
solution of (15) will be described in the following section.
When the final potential distribution) is obtained,
the total charge on the inner conductor can be calculated
by applying Gauss’ law to a control surface enclosing the
inner conductor. The control volume is a rectangle with the
control surfaces coincident with the boundaries or the cells
on the finest level. The total charge on the inner conductor
Qi is equal to thetotal current flowing out of the control
surface. Since the finite-volume discretization preserves thep)
conservation of the electric flux, the calculated total charge
on the inner conductor is independent of the position of the
control volume. Then, the capacitance can be obtained by
calculating @i,/ Vo.

VI. THE MULTIGRID METHOD

A. Multigrid Algorithm

The matrix (15) is banded and sparse, and can be solved
by the conventional iteration methods such as GS, red—black

Applying a few, e.g., two or three, GS iterations on (15)
with a suitable initial guess gives the approximate solu-
tion p{*). Then, the erroe®™) = ¢(M) — M) which is
mainly composed of low-frequency components, should
satisfy the following defect equation:

A(]\l)e(l\l) _ 7,(]\4) (16)

with residual

pOD) = pOD) _ 4 (M) (17)
It should be noted that (16) is of the same form as (15).
Projecting the defect equation from(™) to G(M-1)
gives

AM=1) (M=1) _ . (M~1) (18)
where AM-1) is the coarse-grid operator of(*—1)

and the details will be described in the next subsection,
eM=1) is the unknown error orG(M-1) (M-1) jg
obtained by using the bilinear restriction [14] gf*)
from GM) to GM-1). Then, applying two or three GS
iterations on (18) with a zero initial guess gives the ap-
proximate solutionz,(kM_l). Now, the HF components of
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error onG™ =1 which are low-frequency components y

relative toG(*), can be reduced. Using an effective area W

interpolation [19] fore{* ™Y from G-V to G(M) Enty I

giveS(z,(kM) Thus, the new approximate soluti@ﬂﬁM) is h | —

replaced by + M), | Eonlyy
3) Applying two or three GS iterations on (15) with the ini- Fa RIS

tial guessd)iM) gives the updated approximate solution :w:

pM). €., "
As more frequency components of error can be reduced by il ; -

iterating on bothG*) and G*—1) than on onlyG™), it B TR

is expected that the convergence rate can be increased if kl3e6. Microstrip line embedded in an inhomogeneous anisotropic dielec-
iterations are applied on all the grids from the fin€$t?) to tric.

the coarsest/ (1. In this work, the multigrid V-cycling (MV)

and full multigrid V-cycling (FMV) [20] are both used in theand

authors’ calculation. Ra(zs, z5|ys, ya)

:Rx <.’IZ’3, T3+ T4

2
B. Coarse-Grid Operator of Cell-Centered Discretization R < T4+ T35
x| T4,

r3+x
Y3, y4> +Rx<—3 5 ) aalys, y4>

) LR <$4+$5 )
; T y Ty ;
In this subsection, one wants to derive the coarse-grid Ys, 2 s, s

operatorA™ -1 directly from the finest grid operatot(*). (21)
Then A®), where k is decreasing fromM — 2 to 1, can

be derived fromA%**+1 . When the dielectric medium is respectively. From (19)—(21), the resistancer®f! 1 can be

homogeneous, the finite-difference forms at a fine-grid poightained by the combination of the series and the parallel of
and that at a coarse-grid point are the same. However, if fi resistance o). Similarly, the resistance on the coarser

medium in the fine cells are inhomogeneous, the coarse-ghigy *) wherek is decreasing from/ — 2 to 1, can also
operator and the fine-grid operator are different. Hence, tgg gerived by the help of the resistive network G##+1).

derivation of the difference formula on coarse grids should B8, same process can also be applied in the calculation of
carefully treated. McCormick defines the coarse-grid operaigf, resistance in the other three directions. Thus, the operation

by a variational approach [16]. However, the operator cougfnt [19] by using (20) and (21) is much less than that using
is time consuming as referred in [19]. In this work, the finiteg,a yariational approach.

volume discretization derived in Section IV and its circuit

analogy described in Section V can also be applied in this VI
case. The shaded region, which includes four equal fine cells ) )
as shown in Fig. 5, is chosen as the control volume. AlthoughT0 demonstrate the rapid convergence of the improved

the discretization error is larger on the coarser grid thdpultigrid method proposed in this paper, three examples with

on the finer one, the general finite-difference form (11) &€ same electrode structures (see Fig. 1) but filled with

also applied at the coarse-grid poiftt That is because the dlffgre_nt dlele_ctrlg media are tested. The electrode parameters
function of the iteration on the coarser grid is simply to reduc@ indicated in Fig. 1 arei = 1.2, b = 1.8, w, = 3; h = 1.2;

the lower frequency components of errors. This mathemati@ldwy = 2. The parameters to be calculated is the capacitance

derivation can also be replaced by a resistive network. Frdmand the effective dielectric constanty, defined asC/C,,
(12), Ru(z3, z5|y2, y4) can be rewritten as whereC, is obtained by calculating” with all the dielectric

media replaced by air.
The first example is a microstrip line embedded in an

. NUMERICAL EXAMPLES

Re (23, x5]y2, ya) inhomogeneous anisotropic dielectric as shown in Fig. 6 [21],
_ Ralws, wslyz, ys) - Ra(ws, 25lys, ya) (19) [22]. There are four kinds of anisotropic dielectric medium
R (33, m5ly2, y3) + Re(x3, T5]Y3, ya) enclosed by the conducting boundary. Each dielectric has a

dielectric constant, and therefore, the dielectric medium is
By the help of (14)R..(z3, x5|y2, y3) and R.(x3, z5]ys, y4) globally inhomogeneous. First, the isotropic case is considered.

in (19) can be rewritten as The parameters as indicated in the figure for the numerical test
arex; =08, 220 =22,y1 =04,y =08, €,1 = Eyl = €0,
R (3, =35|yo, Ex2 = &y2 = beo, €u3 = ey3 = 100, €24 = €44 = &0,
(w3, @sly: yi) n wheree is the dielectric constant of air. Fig. 7(a) shows the
:Rw<$3, SR Y2, y3> +Rw<$3 374, T4|Yo, yg) normalized L, norm of residual onG(® for three iteration
2 2 methods: FMV, MV [20], and GS on the finest gri@d®.
et 5 Tyt T Solid and dashed lines denote the cases with and without
+R$ xr ) 9 +Rx ] L5 ) . . . . .
< * 2 |” y3> < 2 b2 y;»,) dielectrics, respectively. The costs of the above three iterations

(20) are measured in terms of work units. One work Ufit/(*)
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10° = TABLE 1
E C B ——— NumBER OF WORK UNITS REQUIRED FOR THEFIRST EXAMPLE
=1 - ==
R GS
£ E Grid Pojnts  Work Units ~ Without Dielectrics With Dielectrics
E 10'"’i EMV \‘\ Isotropic Anisotropic
% o o A FMV MV GS FMV MV GS FMV MV GS
,’j [ 96X64 Grid Points
-ﬁ; 10"5:— With Dielectrics ™= 6x4 WU 285 325 22 350 325 32 350 325 43
E [ -~ Without Diclecirics 12x8 [WU®] 304 281 73 248 281 101 248 281 08
Z 9™ | |
10 10° = '””1[0, o 1““1101 = Il”lll)‘ 24x16  [WU®] 290 324 256 290 324 372 290 378 353
Work Units [WU“) 48x32  [WU®] 286 321 913 286 375 1199 340 482 1021
(@) 96 x 64 [WU®] 285 374 3249 285 374 4771 338 534 4085
192 x 128 [WU?1 231 373 231 373 338 533
10°
3 \
E] r
% : Gs
v 107 MV i F
3 - FMV "
g C
2 10" £ nE
o5 r
T .F 96X4 Grid Point K
;T': ]Oh - o1nts M —.\lm
g - ; ,
i=} - .
z 107 cood c ool e E‘u'l'rE_l..l b
10° 10! 10° 10° X
Work Units [WU®] fl - L 2
) ] a b "

Fig. 8. Microstrip line with slope sidewall embedded in an anisotropic

Fig. 7. Convergence history of the normalizéd norm of the residual for gielectric

microstrip line shown in Fig. 6. (a) Isotropic and (b) anisotropic dielectri
medium.

denotes the cost of performing one GS iteration on the finest
grid G [19]. Table Il shows the number of work units
required for a normalized., norm of less than or equal to
1076, Obviously, the convergence rate of the GS scheme is
extremely poor as compared to those of the FMV and MV.
This is because the low-frequency components of error are
difficult to be removed by the conventional GS method, which
iterates only on a single grid (finest grid). The convergence rate bl il 4
of the FMV s slightly faster than that of the MV because a 1 10 10° 10°
better initial guess orG(M.) is adopted by the FMV [20]. As Work Units [WU®]
can also be seen from Fig. 7(a) and Table Il, the convergence
rate in the calculation of the field distribution with and withouFig. 9. Convergence history of the normalizéd norm of the residual for
dielectrics are quite similar, which indicates the complexit{® microstiip line shown in Fig. 8.
of dielectric structure only slightly affects the convergence
rate during iteration. To test the convergence rate for tktope. Hence, the normal vectors of the interfaces where the
anisotropic case, the previous dielectric constants are repladéslectric constants pose discontinuity are still parallel to the
by €21 = 3e0, g41 = 6e0, €22 = 6, £y2 = 10eq, €23 = 43g9,  z- or y-axis. Fig. 9 shows the normalized, norm of residual
ey2 = 28¢q, ande,y = 44 = 9. The same calculation is alsocalculated by FMV, MV, and GS methods of iterations used
carried out once again. The results are shown in Fig. 7(b) apviously. Table Il also shows the number of work units
Table II. Similar fast convergence is also obtained. And threquired for a normalized., norm of less than or equal to
anisotropy of the dielectric does not significantly affect the0—°. As can be seen from Fig. 9 and Table Ill, the improved
convergence rate, too. multigrid method also works as well for this case. Again,
The second example is to analyze the microstrip line a® significant difference in rates of convergence due to the
shown in Fig. 8. In this example, the sidewall of the dielectrianisotropy of the structure is observed.
medium has a slope, which can be found in the fabrication To demonstrate the convergence rate for a more complicated
of the integrated optical waveguide [23], [24]. The slopdielectric structure, the third example is depicted as shown in
makes the problem much more difficult to be solved blig. 10. The dielectric constant is graded in the substrate as
the conventional vertex-centered finite-difference method. Theven by
parameters used for the isotropic case gfe= ¢,1 = 10&g
ande,o = gy42 = €¢, €2 = 10gg. For the anisotropic case, the o)1 [ )BT
parameters are,; = 43¢, €,1 = 28¢¢, ande o = 2 = &o. €41 = €0 + Aeppeoe [(F=0)/ o= lly=h)/R] (22.1)
The dielectric constants are assumed to be staircase near the  e,1 =eo + Ay, coe "=/ L = [w=m/M" (22 2)

96X64 Grid Points
Isotropic
***** Anisotropic

10"

IIII|IIII|IIII|IIII

Normalized L, Norm of Residual
3

(=3
°
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TABLE IlI TABLE IV
NuMBER OF WORK UNITS REQUIRED FOR THE SECOND EXAMPLE NumBER OF WORK UNITS REQUIRED FOR THE THIRD EXAMPLE
Grid Points Work Units  Isotropic Dielectric ~ Anisotropic Dielectric Grid Points Work Units  Isotropic Dielectric ~ Anisotropic Dielectric
FMV MV GS FMV MV GS FMV MV GS FMV_ MV  GS
6x4 [WUP] 285 260 26 350 390 35 6x4 [WU®P] 220 260 26 285 325 32
12x8 [WU®] 304 281 83 360 394 111 12x8 [WU®] 304 281 88 304 338 113
24x16 [WU®] 290 324 292 398 433 392 24x16 [WU®] 290 324 316 398 433 405
48x32  [WU®] 286 321 1052 340 482 1413 48x32 [WU®] 286 321 1135 340 482 1459
96 x64 [WU®] 285 374 3778 338 534 5083 96 x64 [WU®] 285 374 4059 338 534 5229
192x128 [WUP] 231 373 285 53.3 192x128  [WU™] 285 53.3 285  53.3
¥ TABLE V
W EFFECTIVE DIELECTRIC CONSTANTS
P o
T e Example Effective Dielectric Constant

This method [7] and [8]

i |
L Ex1 Isotropic 2.7517 2.7570

il . Anisotropic 6.0619

il i h "k

Ex2 Isotropic 4.1449 4.0868
Fig. 10. Microstrip line embedded in an inhomogeneous anisotropic dielec- . .
tric. Anisotropic 10.8515
Ex3 Isotropic 3.1213
v Anisotropic 12.4150

problem with a large amount grid points, where the iterations
required for the GS is extremely large.

The effective dielectric constants calculated by the FMV in
the above three examples are shown in Table V. The difference
between the results calculated by this method and that obtained

by the moment method [7], [8] is less than 2%.
Fig. 11. Convergence history of the normalizég norm of the residual for
microstrip line shown in Fig. 10.

96X64 Grid Points

— - Isotropic
fffff Anisotropic

WH\[!H\‘V!H![\HI

Normalized L, Norm of Residual
=

Work Units [WU®]

VIIl. CONCLUSION

) . An improved multigrid technique has been successfully
wherec = (a + b)/2. The parameters for the isotropic casgppjieq in the quasi-TEM analysis of a microstrip embedded
as indicated in Fig. 10 for the numerical test a,. = 5 an inhomogeneous anisotropic medium. The general finite-
Aeyy = 6 andegy = ey = 0. For the anisotropic case, thegitrerence form on inhomogeneous anisotropic medium is
parameters arée,,. = 43 andAe,, = 28, while e, ande,>  gerived by the finite-volume discretization of an integral
are unchanged. Similar fast convergence rate in terms of Wefyation, which preserves the conservation of the electric flux.
units is observed as shown in Fig. 11 and Table IV. Hencgying to the close analogy between the quasi-TEM and steady
the complexity and the anisotropy of dielectric structure cafyrrent problems, the solution of the microstrip line embedded
only have a negligible effect on the convergence rate of th¢an innomogeneous anisotropic medium is equivalent to that
improved multigrid method. of a resistive network. The finite-difference forms, from the

As can also been seen from Tables II-IV, to obtain certafmest to the coarsest, can all be obtained by app|y|ng the
required accuracy, the work units [in terms &FU™)]  Kirchhoff law on the resistive network. The resulting matrix
required for FMV or MV iterations o) are almost the equation for the potential distribution on the finest grid is
same for allA, while that for GS iterations is increasingsolved by the improved multigrid iteration, where the coarse-
rapidly with M. Note that the cost of one work uniU*)  grid operator is derived directly from that on the finest grid
is four times as large as one work unitU*=%) since the by the help of an equivalent resistive network.
number of grid points onG*) is four times as those on Three numerical examples are given and the results are
G*=1, Thus, the computing time for the FMV and MV arein good agreement with those by the other method when
approximately on the order ¢¥(V,,), whereN,, is the number special cases are considered. The convergence rate is hardly
of grid points, but roughly on the order u{t)(Ng) for GS dependent of the number of unknowns and the complexity of
iterations. So, the FMV and MV are most suitable for ththe dielectric media.
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In this paper, only one microstrip line embedded in apfe6] S. F. McCormick and J. W. Ruge, “Multigrid methods for variational
inhomogeneous anisotropic medium is considered. HowevElr_,]
in many practical applications, two or more microstrip line
are usually involved. The application of the present methdtb]
on the field calculation of these microstrip structures will bﬁg]
of great interest in the future.
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